

BPHYM102/202

First/Second Semester B.E./B.Tech. Degree Examination, June/July 2024 Applied Physics for ME Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks , L: Bloom's level , C: Course outcomes.
3. VTU Hand book is permitted.

					10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
		Module – 1	M	L	C
Q.1	a.	Define Spring Constant. Obtain an expression for equivalent force constant	8	L2	CO1
		for two springs in series and parallel combination. What is the expression			
		for time period of oscillation in above cases?	2		
	b.	What is Mach Number? Distinguish subsonic ultrasonic, supersonic and	8	L2	C01
		hypersonic flow.			
	C.	In Reddy tube experiment, it was found that the time taken to travel	4	L3	CO1
		between the two sensors is 195 microseconds. If the distance between the	8. J.		001
		two sensors is 100mm Find Mach Number. Given velocity of sound under	3 N 1		
		the same conditions is 340m/s			
		OR			I
0.2	8.	Obtain a differential equation for a body undergoes forced oscillation and	8	1.2	C01
		mention the expression for amplified and phase of oscillation	Ŭ		
	b.	What are shock wayes? Describe the construction and working of Reddy	7	1.2	C01
		shock tube with neat diagram	100 - 120 A		
	C	A spring undergoes extension of 5cm for a load of 50gm Find its frequency	5	13	COS
		of oscillation. If it set for vertical oscillation with a load of 200gm attached	5		005
		to its bottom Ignore the mass of the spring			
		to his contoini. Ignore the main of the spring.	÷.		
		Module			
03	9	Explain the types of strain Explain the nature of elasticity with the help of	8	1.2	C01
V •2	a.	stress- strain diagram	0		COI
	h	Define Poisson's ratio Young's modulus Bulk modulus Derive the	8	12	C01
	0.	relation for (V', n) and (σ')	0		COI
					001
	c.	Calculate the force required to produce an extension of 3mm in steel wire	4	L3	C01
		of length 3m and diameter 2mm ($y = 20 \times 10^{10} \text{ N/m}^2$).			
			-	1	
0.1			0	TA	001
Q.4	a.	What is bending moment? Derive the expression for the bending moment in	8	L2	COI
(terms of moment of Inertia. Hence, arrive the expression for a bending		1	
	100	moment of circular and rectangular cross sections.	-		~~ 1
	b.	Discuss the different types of beams and explain 'I' section Girder and their	8	L2	C01
	-	Engineering applications.	-		
	c.	A metal wire of length 1.5m is loaded and an elongation of 2mm is	4	L3	CO1
		produced. If the diameter of wire is 1mm, find the change in diameter of			
		wire when elongated (where $\sigma = 0.24$).	а.		
		Module – 3	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	2	
Q.5	a.	What is Seeback effect? Explain variation of Thermo-emf with temperature	8	L2	CO2
		and obtain the relation between inversion temperature and neutral		8	
		temperature.			
-		•	-		

BPHYM102/202

t are thermo couples? Explain laws of thermo – electricity with neat the formation of a thermo couple is 1200 microvolts when working between 0°C 100°C. Its neutral temperature is 300°C. Find the value of 'a' and 'b' OR t are thermo-eletric materials? Explain Low, mid and high temperature no electric materials and mention their applications. ribe the construction and working of Thermo electric generator and ion the applications of it. emf in microvolts of a thermocouple one junction of which is at 0°C is a by $e = 1600T - 4T^2$, where T°C is the temperature of hot junction. neutral temperature and Piltier co-efficient. Module – 4 ain the construction and working of porous plug experiment with neat am. ribe the Lindey's air liqufier. ulate the inversion temperature of gas. Given a = 0.244 at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol.	8 4 8 8 4 8 8 4 4	L2 L3 L L L L L2 L3	CO2 CO2 CO CO CO CO3 CO3 CO3
of a thermo couple is 1200 microvolts when working between 0°C 100°C. Its neutral temperature is 300°C. Find the value of 'a' and 'b' OR t are thermo-eletric materials? Explain Low, mid and high temperature no electric materials and mention their applications. ribe the construction and working of Thermo electric generator and ion the applications of it. emf in microvolts of a thermocouple one junction of which is at 0°C is a by $e = 1600T - 4T^2$, where T°C is the temperature of hot junction. neutral temperature and Piltier co-efficient. Module – 4 ain the construction and working of porous plug experiment with neat tam. ribe the Lindey's air liqufier. ulate the inversion temperature of gas. Given a = 0.244 at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol.	4 8 8 4 8 8 4	L3 L L L L2 L3	CO2 CO CO CO CO3 CO3 CO3
ORt are thermo-eletric materials? Explain Low, mid and high temperatureno electric materials and mention their applications.ribe the construction and working of Thermo electric generator andion the applications of it.emf in microvolts of a thermocouple one junction of which is at 0°C ismethod the imperature of the applications.method to be a thermocouple one junction of which is at 0°C ismethod to be a thermocouple one junction of which is at 0°C ismethod to be a thermocouple one junction of which is at 0°C ismethod to be a thermocouple one junction of which is at 0°C ismethod to be a thermocouple one junction of which is at 0°C ismethod to be a thermocouple one junction of which is at 0°C ismethod to be a thermocouple one junction of which is at 0°C ismethod to be a thermocouple one junction of which is at 0°C isneutral temperature and Piltier co-efficient.Module - 4ain the construction and working of porous plug experiment with neatain.ribe the Lindey's air liqufier.ulate the inversion temperature of gas. Given a = 0.244 at m L²/moL²,ORain Joule-Thomson effect. DeriveIPIPIPIPIP	8 8 4 8 8 8 4	L L L2 L2 L3	CO CO CO3 CO3 CO3
t are thermo-eletric materials? Explain Low, mid and high temperature no electric materials and mention their applications. ribe the construction and working of Thermo electric generator and ion the applications of it. emf in microvolts of a thermocouple one junction of which is at 0°C is n by $e = 1600T - 4T^2$, where T°C is the temperature of hot junction. neutral temperature and Piltier co-efficient. <u>Module - 4</u> ain the construction and working of porous plug experiment with neat am. ribe the Lindey's air liqufier. ulate the inversion temperature of gas. Given a = 0.244 at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol. OR ain Joule-Thomson effect. Derive	8 8 4 8 8 8 4	L L L L2 L3	CO CO CO CO3 CO3 CO3
ribe the construction and working of Thermo electric generator and ion the applications of it. emf in microvolts of a thermocouple one junction of which is at 0°C is in by $e = 1600T - 4T^2$, where T°C is the temperature of hot junction. neutral temperature and Piltier co-efficient. Module - 4 ain the construction and working of porous plug experiment with neat am. ribe the Lindey's air liqufier. ulate the inversion temperature of gas. Given a = 0.244 at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol. OR ain Joule-Thomson effect. Derive	8 4 8 8 4	L L L2 L2 L3	CO CO CO3 CO3 CO3
emf in microvolts of a thermocouple one junction of which is at 0°C is in by $e = 1600T - 4T^2$, where T°C is the temperature of hot junction. neutral temperature and Piltier co-efficient. <u>Module - 4</u> ain the construction and working of porous plug experiment with neat am. ribe the Lindey's air liqufier. ulate the inversion temperature of gas. Given a = 0.244 at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol. <u>OR</u> ain Joule-Thomson effect. Derive	4 8 8 4	L L2 L2 L3	CO3 CO3 CO3
Module – 4ain the construction and working of porous plug experiment with neat ram.ribe the Lindey's air liqufier.ulate the inversion temperature of gas. Given $a = 0.244$ at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol.ORain Joule-Thomson effect. Derive	8 8 4	L2 L2 L3	CO3 CO3 CO3
ain the construction and working of porous plug experiment with neat ram. ribe the Lindey's air liqufier. ulate the inversion temperature of gas. Given a = 0.244 at m L^2/moL^2 , 0.027 L/moL and R = 0.0821 Latm/K/mol. OR ain Joule-Thomson effect. Derive	8 8 4	L2 L2 L3	CO3 CO3 CO3
ribe the Lindey's air liqufier. ulate the inversion temperature of gas. Given a = 0.244 at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol. OR ain Joule-Thomson effect. Derive	8 4	L2 L3	CO3 CO3
ulate the inversion temperature of gas. Given $a = 0.244$ at m L ² /moL ² , 0.027 L/moL and R = 0.0821 Latm/K/mol. OR ain Joule-Thomson effect. Derive	4	L3	CO3
OR ain Joule-Thomson effect. Derive	0	a serie commence of	1
ain Joule-Thomson effect. Derive	0		L
	0	L2	CO3
$= \left[\frac{P_1 - P_2}{C_p}\right] \left(\frac{2a}{RT} - b\right).$,		
t is Cryogenics? Explain the applications of cryogenics in aerospace food processing.	8	L2	CO3
atinum resistance thermometer has resistance of 2Ω and 0° C and 3Ω at C. What will be the temperature when resistance indicates 5Ω .	4	L3	CO3
Module – 5			
ain the construction and working of X-ray diffractometer and discuss cherrer's method for determining Crystallite size.	8	L2	CO4
ribe construction and working of SEM and mention its applications.	8	L2	CO4
K-ray undergoes First order Bragg's diffraction by the crystal with 'd'	4	L3	CO4
ing 5.6 A at a glancing angle 12 calculate wavelength of X-rays.			
OR	1	1	
t are Nonomaterials and Nano composites? Discuss their classification d on their dimensional constraints.	8	L2	CO4
ribe the principle, construction and working of X-ray photo Electron troscopy and mention its advantages and applications.	8	L2	CO4
rmine the Crystallite size using Scherrer's relation. Given $\lambda = 1.5 \text{ Å}$, 35° and $k = 0.94$ peak full width half maxima = 0.5°.	4	L3	CO4
	t is Cryogenics? Explain the applications of cryogenics in aerospace food processing. atinum resistance thermometer has resistance of 2Ω and 0°C and 3Ω at C. What will be the temperature when resistance indicates 5Ω . Module – 5 ain the construction and working of X-ray diffractometer and discuss Scherrer's method for determining Crystallite size. ribe construction and working of SEM and mention its applications. K-ray undergoes First order Bragg's diffraction by the crystal with 'd' ing 3.6 Å at a glancing angle 12° calculate wavelength of X-rays. OR t are Nonomaterials and Nano composites? Discuss their classification d on their dimensional constraints. rribe the principle, construction and working of X-ray photo Electron troscopy and mention its advantages and applications. rrmine the Crystallite size using Scherrer's relation. Given $\lambda = 1.5$ Å, 35° and k = 0.94 peak full width half maxima = 0.5°. *****	t is Cryogenics? Explain the applications of cryogenics in aerospace food processing. atinum resistance thermometer has resistance of 2Ω and 0°C and 3Ω at C. What will be the temperature when resistance indicates 5Ω. Module – 5 ain the construction and working of X-ray diffractometer and discuss Scherrer's method for determining Crystallite size. Tribe construction and working of SEM and mention its applications. Array undergoes First order Bragg's diffraction by the crystal with 'd' ing 3.6 Å at a glancing angle 12° calculate wavelength of X-rays. OR t are Nonomaterials and Nano composites? Discuss their classification d on their dimensional constraints. Tribe the principle, construction and working of X-ray photo Electron troscopy and mention its advantages and applications. Trimine the Crystallite size using Scherrer's relation. Given $\lambda = 1.5$ Å, 35° and k = 0.94 peak full width half maxima = 0.5°. *****	t is Cryogenics? Explain the applications of cryogenics in aerospace food processing. atinum resistance thermometer has resistance of 2Ω and 0°C and 3Ω at C. What will be the temperature when resistance indicates 5Ω. Module – 5 ain the construction and working of X-ray diffractometer and discuss Scherrer's method for determining Crystallite size. Tribe construction and working of SEM and mention its applications. K-ray undergoes First order Bragg's diffraction by the crystal with 'd' ing 3.6 Å at a glancing angle 12° calculate wavelength of X-rays. OR t are Nonomaterials and Nano composites? Discuss their classification d on their dimensional constraints. Tribe the principle, construction and working of X-ray photo Electron troscopy and mention its advantages and applications. Trimine the Crystallite size using Scherrer's relation. Given $\lambda = 1.5$ Å, 35° and k = 0.94 peak full width half maxima = 0.5°. 2 of 2